YOLO11改进 | 注意力机制 | 结合静态和动态上下文信息的注意力机制

秋招面试专栏推荐深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡


上下文Transformer(CoT)块是一种新颖的Transformer风格模块,用于视觉识别。它充分利用输入键之间的上下文信息来指导动态注意力矩阵的学习,从而加强了视觉表示的能力。CoT块首先通过3×3卷积对输入键进行上下文化编码,得到输入的静态上下文表示。然后,将编码后的键与输入查询连接起来,通过两个连续的1×1卷积来学习动态的多头注意力矩阵。最后,将静态和动态上下文表示的融合作为输出。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改并将修改后的完整代码放在文章的最后方便大家一键运行小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。

专栏地址:YOLO11入门 + 改进涨点——点击即可跳转 欢迎订阅

目录

1.论文

2. 将CoTAttention添加到YOLO11中

2.1 CoTAttention代码实现

2.2 更改init.py文件

2.3 添加yaml文件

2.4 在task.py中进行注册

2.5 执行程序

3.修改后的网络结构图

4. 完整代码分享

5. GFLOPs

6. 进阶

7.总结


1.论文

论文地址:Contextual Transformer Networks for Visual Recognition——点击即可跳转

官方代码:官方代码仓库——点击即可跳转

2. 将CoTAttention添加到YOLO11中

2.1 CoTAttention代码实现

关键步骤一: 将下面代码粘贴到在/ultralytics/ultralytics/nn/modules/block.py中

class CoTAttention(nn.Module):

    def __init__(self, dim=512, kernel_size=3):
        super().__init__()
        self.dim = dim
        self.kernel_size = kernel_size

        self.key_embed = nn.Sequential(
            nn.Conv2d(dim, dim, kernel_size=kernel_size, padding=kernel_size // 2, groups=4, bias=False),
            nn.BatchNorm2d(dim),
            nn.SiLU()
        )
        self.value_embed = nn.Sequential(
            nn.Conv2d(dim, dim, 1, bias=False),
            nn.BatchNorm2d(dim)
        )

        factor = 4
        self.attention_embed = nn.Sequential(
            nn.Conv2d(2 * dim, 2 * dim // factor, 1, bias=False),
            nn.BatchNorm2d(2 * dim // factor),
            nn.SiLU(),
            nn.Conv2d(2 * dim // factor, kernel_size * kernel_size * dim, 1)
        )

    def forward(self, x):
        bs, c, h, w = x.shape
        k1 = self.key_embed(x)  # bs,c,h,w
        v = self.value_embed(x).view(bs, c, -1)  # bs,c,h,w

        y = torch.cat([k1, x], dim=1)  # bs,2c,h,w
        att = self.attention_embed(y)  # bs,c*k*k,h,w
        att = att.reshape(bs, c, self.kernel_size * self.kernel_size, h, w)
        att = att.mean(2, keepdim=False).view(bs, c, -1)  # bs,c,h*w
        k2 = F.softmax(att, dim=-1) * v
        k2 = k2.view(bs, c, h, w)

        return k1 + k2

2.2 更改init.py文件

关键步骤二:修改modules文件夹下的__init__.py文件,先导入函数

然后在下面的__all__中声明函数

2.3 添加yaml文件

关键步骤三:在/ultralytics/ultralytics/cfg/models/11下面新建文件yolo11_CoTA.yaml文件,粘贴下面的内容

  • 目标检测
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
  - [ -1, 1, CoTAttention, [1024] ]

  - [[16, 19, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)
  • 语义分割
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
  - [ -1, 1, CoTAttention, [1024] ]

  - [[16, 19, 23], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)
  • 旋转目标检测
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
  - [ -1, 1, CoTAttention, [1024] ]

  - [[16, 19, 23], 1, OBB, [nc, 1]] # Detect(P3, P4, P5)

温馨提示:本文只是对yolo11基础上添加模块,如果要对yolo11n/l/m/x进行添加则只需要指定对应的depth_multiple 和 width_multiple。


# YOLO11n
depth_multiple: 0.50  # model depth multiple
width_multiple: 0.25  # layer channel multiple
max_channel:1024
 
# YOLO11s
depth_multiple: 0.50  # model depth multiple
width_multiple: 0.50  # layer channel multiple
max_channel:1024
 
# YOLO11m
depth_multiple: 0.50  # model depth multiple
width_multiple: 1.00  # layer channel multiple
max_channel:512
 
# YOLO11l 
depth_multiple: 1.00  # model depth multiple
width_multiple: 1.00  # layer channel multiple
max_channel:512 
 
# YOLO11x
depth_multiple: 1.00  # model depth multiple
width_multiple: 1.50 # layer channel multiple
max_channel:512

2.4 在task.py中进行注册

关键步骤四:在task.py的parse_model函数中进行注册,

 先在task.py导入函数

然后在task.py文件下找到parse_model这个函数,如下图,添加CoTAttention

elif m is CoTAttention:
            c1, c2 = ch[f], args[0]
            if c2 != nc:
                c2 = make_divisible(min(c2, max_channels) * width, 8)
            args = [c1, *args[1:]]

2.5 执行程序

关键步骤五:在ultralytics文件中新建train.py,将model的参数路径设置为yolo11_CoTA.yaml的路径即可

from ultralytics import YOLO
import warnings
warnings.filterwarnings('ignore')
from pathlib import Path
 
if __name__ == '__main__':
 
 
    # 加载模型
    model = YOLO("ultralytics/cfg/11/yolo11.yaml")  # 你要选择的模型yaml文件地址
    # Use the model
    results = model.train(data=r"你的数据集的yaml文件地址",
                          epochs=100, batch=16, imgsz=640, workers=4, name=Path(model.cfg).stem)  # 训练模型

 🚀运行程序,如果出现下面的内容则说明添加成功🚀

                   from  n    params  module                                       arguments
  0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  2                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
  3                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
  4                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
  5                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
  6                  -1  1     87040  ultralytics.nn.modules.block.C3k2            [128, 128, 1, True]
  7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
  8                  -1  1    346112  ultralytics.nn.modules.block.C3k2            [256, 256, 1, True]
  9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 10                  -1  1    249728  ultralytics.nn.modules.block.C2PSA           [256, 256, 1]
 11                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 12             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 13                  -1  1    111296  ultralytics.nn.modules.block.C3k2            [384, 128, 1, False]
 14                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 15             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 16                  -1  1     32096  ultralytics.nn.modules.block.C3k2            [256, 64, 1, False]
 17                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 18            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 19                  -1  1     86720  ultralytics.nn.modules.block.C3k2            [192, 128, 1, False]
 20                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 21            [-1, 10]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 22                  -1  1    378880  ultralytics.nn.modules.block.C3k2            [384, 256, 1, True]
 23                  -1  1    577024  ultralytics.nn.modules.block.CoTAttention    [256]
 24        [16, 19, 23]  1    464912  ultralytics.nn.modules.head.Detect           [80, [64, 128, 256]]
YOLO11_CoTAttention summary: 332 layers, 3,201,104 parameters, 3,201,088 gradients, 7.1 GFLOPs
wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==

3.修改后的网络结构图

4. 完整代码分享

这个后期补充吧~,先按照步骤来即可

5. GFLOPs

关于GFLOPs的计算方式可以查看百面算法工程师 | 卷积基础知识——Convolution

未改进的YOLO11n GFLOPs

改进后的GFLOPs

6. 进阶

可以与其他的注意力机制或者损失函数等结合,进一步提升检测效果

7.总结

通过以上的改进方法,我们成功提升了模型的表现。这只是一个开始,未来还有更多优化和技术深挖的空间。在这里,我想隆重向大家推荐我的专栏——《YOLO11改进有效涨点》。这个专栏专注于前沿的深度学习技术,特别是目标检测领域的最新进展,不仅包含对YOLO11的深入解析和改进策略,还会定期更新来自各大顶会(如CVPR、NeurIPS等)的论文复现和实战分享。

为什么订阅我的专栏? ——《YOLO11改进有效涨点》

  1. 前沿技术解读:专栏不仅限于YOLO系列的改进,还会涵盖各类主流与新兴网络的最新研究成果,帮助你紧跟技术潮流。

  2. 详尽的实践分享:所有内容实践性也极强。每次更新都会附带代码和具体的改进步骤,保证每位读者都能迅速上手。

  3. 问题互动与答疑:订阅我的专栏后,你将可以随时向我提问,获取及时的答疑

  4. 实时更新,紧跟行业动态:不定期发布来自全球顶会的最新研究方向和复现实验报告,让你时刻走在技术前沿。

专栏适合人群:

  • 对目标检测、YOLO系列网络有深厚兴趣的同学

  • 希望在用YOLO算法写论文的同学

  • 对YOLO算法感兴趣的同学等

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/890003.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

WPF中的布局

布局原则 1、不显式设置元素大小。 2、不使用绝对定位。 元素应该根据容器的内容来进行排列。绝对定位在开发前期会带来一些便捷,但扩展性比较差。一旦显示器尺寸或分辨率发生改变,界面的显示效果可能会达不到预期的效果。 3、布局容器可以嵌套使用 常…

【Axure原型分享】标签管理列表

今天和大家分享通过标签管理列表的原型模板,包括增删改查搜索筛选排序分页翻页等效果,这个模板是用中继器制作的,所以使用也很方便,初始数据我们只要在中继器表格里填写即可,具体效果可以观看下方视频或者打开预览地址…

【经管】上市公司供应链金融数据(1990-2023年)

上市公司供应链金融是指上市公司利用其产业链核心地位,通过整合金融资源,为供应链上下游企业提供包括融资、结算、风险管理等在内的综合金融服务。为了衡量上市公司的供应链金融水平,参考周兰等(2022)的研究方法&#…

【C++入门篇 - 3】:从C到C++第二篇

文章目录 从C到C第二篇new和delete命名空间命名空间的访问 cin和coutstring的基本使用 从C到C第二篇 new和delete 在C中用来向系统申请堆区的内存空间 New的作用相当于C语言中的malloc Delete的作用相当于C语言中的free 注意:在C语言中,如果内存不够…

IBM Flex System服务器硬件监控指标解读

随着企业IT架构的日益复杂,服务器的稳定运行对于保障业务连续性至关重要。IBM Flex System作为一款模块化、可扩展的服务器解决方案,广泛应用于各种企业级环境中。为了确保IBM Flex System服务器的稳定运行,监控易作为一款专业的IT基础设施监…

git维护【.gitignore文件】

在工程下添加 .gitignore 文件【git忽略文件】 *.class .idea *.iml *.jar /*/target/更多: # Compiled class file *.class# Log file *.log *.imi *.lst# BlueJ files *.ctxt# Mobile Tools for Java (J2ME) .mtj.tmp/# Package Files # *.jar *.war *.nar *.ea…

【MySQL 保姆级教学】数据库基础(重点)(2)

目录 1. 什么是数据库1.1 数据库的定义1.2 mysql 和 mysqld1.3 文件和数据库 2. 数据库的分类3. 连接数据库3.1 数据库的安装3.2 连接服务器(数据库)3.3 服务器 数据库 表 三者的关系 4. 数据库-表 和目录-文件 的关系5. MySQL 框架6. SQL 分类7. 储存引…

DDoS攻击快速增长,如何在抗ddos防护中获得主动?

当下DDoS攻击规模不断突破上限。前段时间,中国首款3A《黑神话:悟空》也在一夜之内遭受到28万次攻击DDoS攻击,严重影响到全球玩家的游戏体验。Gcore发布的数据也显示了 DDoS攻击令人担忧的趋势,尤其是峰值攻击已增加到了令人震惊的…

CNN-GRU时序预测 | MATLAB实现CNN-GRU卷积门控循环单元时间序列预测

时序预测 | MATLAB实CNN-GRU卷积门控循环单元时间序列预测 目录 时序预测 | MATLAB实CNN-GRU卷积门控循环单元时间序列预测预测效果基本介绍模型描述程序设计参考资料预测效果 基本介绍 本次运行测试环境MATLAB2020b 提出了一种基于卷积神经网络(Convolutional Neural Network…

生成式专题的第一节课---GAN图像生成

一、GAN的起源与发展 1.GAN的起源 GAN (生成式对抗网络)诞生于 2014 年,由 Ian Goodfellow 提出,是用于生成数据的深度学习模型,创新点是对抗性训练,即生成器与判别器的竞争关系,为图像生成、…

【网络安全】利用XSS、OAuth配置错误实现token窃取及账户接管 (ATO)

未经许可,不得转载。 文章目录 正文正文 目标:target.com 在子域sub1.target.com上,我发现了一个XSS漏洞。由于针对该子域的漏洞悬赏较低,我希望通过此漏洞将攻击升级至app.target.com,因为该子域的悬赏更高。 分析认证机制后,我发现: sub1.target.com:使用基于Cook…

DBA | 如何将 .mdf 与 .ldf 的数据库文件导入到SQL Server 数据库中?

[ 知识是人生的灯塔,只有不断学习,才能照亮前行的道路 ] 原文链接:DBA | 如何将 .mdf 与 .ldf 的数据库文件导入到SQL Server 数据库中? 如何将 (.mdf) 和 (.ldf) 的SQL Server 数据库文件导入到当前数据库中? Step 1.登录到 Sql Server 服…

Springboot——使用poi实现excel动态图片导入解析

文章目录 前言依赖引入导入实现方式一方式二 导出参考 前言 最近要实现一个导入导出的功能点,需要能将带图片的列表数据导出到excel中,且可以导入带图片的excel列表数据。 考虑到低代码平台的表头与数据的不确定性,技术框架上暂定使用Apach…

线性代数在大一计算机课程中的重要性

线性代数在大一计算机课程中的重要性 线性代数是一门研究向量空间、矩阵运算和线性变换的数学学科,在计算机科学中有着广泛的应用。大一的计算机课程中,线性代数的学习为学生们掌握许多计算机领域的关键概念打下了坚实的基础。本文将介绍线性代数的基本…

C++一个很好的计时方法

C一个很好的计时方法 //记时LARGE_INTEGER t1;LARGE_INTEGER t2;LARGE_INTEGER f;QueryPerformanceFrequency(&f);QueryPerformanceCounter(&t1);Sleep(100);QueryPerformanceCounter(&t2);double time;time (double)(t2.QuadPart-t1.QuadPart)/(double)f.QuadPar…

【Flutter】合并多个流Stream

1.说明 无意间发现了一个好用的库rxdart,它为 Dart 的 Stream 添加了额外的功能。 2.功能 (1)合并多个流Stream 借助Rx.combineLatest2()合并两个流stream1和stream2。 注意:如果dart文件中同时使用了getx,需要隐…

UE4 材质学习笔记03(翻书(Flipbook)动画/环境混合)

一.FlipBook Animation 如果你想让游戏以每秒30帧的速度运行,所有内容都必须在33毫秒内渲染出来, 如果你想让游戏以每秒60帧的速度运行的话,必须在16毫秒内。 所以当一个效果需要很多细节的时候,往往会离线创建它,然…

LLM | Tokenization 从原理与代码了解GPT的分词器

声明:以上内容全是学习Andrej Karpathy油管教学视频的总结。 --------------------------------------------------------------------------------------------------------------------------------- 大家好。在今天我们学习llm中的Tokenization,即分…

springboot 整合 rabbitMQ(1)

目录 一、MQ概述 二、MQ的优势和劣势 三、常见的MQ产品 RabbitMQ使用步骤 第一步:确保rabbitmq启动并且可以访问15672 第二步:导入依赖 第三步:配置 auto自动确认 manual手工确认(推荐使用!可以防止消息丢失&a…